skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Yiwei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Federated learning (FL) is well-suited to 5G networks, where many mobile devices generate sensitive edge data. Secure aggregation protocols enhance privacy in FL by ensuring that individual user updates reveal no information about the underlying client data. However, the dynamic and large-scale nature of 5G-marked by high mobility and frequent dropouts-poses significant challenges to the effective adoption of these protocols. Existing protocols often require multi-round communication or rely on fixed infrastructure, limiting their practicality. We propose a lightweight, single-round secure aggregation protocol designed for 5G environments. By leveraging base stations for assisted computation and incorporating precomputation, key-homomorphic pseudorandom functions, and t-out-of-k secret sharing, our protocol ensures efficiency, robustness, and privacy. Experiments show strong security guarantees and significant gains in communication and computation efficiency, making the approach well-suited for real-world 5G FL deployments. 
    more » « less
    Free, publicly-accessible full text available June 30, 2026
  2. Federated learning (FL) enables collaborative model training while preserving user data privacy by keeping data local. Despite these advantages, FL remains vulnerable to privacy attacks on user updates and model parameters during training and deployment. Secure aggregation protocols have been proposed to protect user updates by encrypting them, but these methods often incur high computational costs and are not resistant to quantum computers. Additionally, differential privacy (DP) has been used to mitigate privacy leakages, but existing methods focus on secure aggregation or DP, neglecting their potential synergies. To address these gaps, we introduce Beskar, a novel framework that provides post-quantum secure aggregation, optimizes computational overhead for FL settings, and defines a comprehensive threat model that accounts for a wide spectrum of adversaries. We also integrate DP into different stages of FL training to enhance privacy protection in diverse scenarios. Our framework provides a detailed analysis of the trade-offs between security, performance, and model accuracy, representing the first thorough examination of secure aggregation protocols combined with various DP approaches for post-quantum secure FL. Beskar aims to address the pressing privacy and security issues FL while ensuring quantum-safety and robust performance. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  3. null (Ed.)